

Class – X

ENTRANCE TEST CUM SCHOLARSHIP (SAMPLE PAPER-2)

[Time: 3 Hours]

[Max Marks: 450]

A. General:

- 1. This booklet is a Question Paper containing 150 questions.
- 2. Blank Papers, Clipboards, Log Tables, slide rules, calculators, cellular phones and electronic gadgets in any form are not allowed to be carried inside the examination hall.
- 3. The answer sheet, a machine-readable optical mark recognition sheet (OMR Sheet), is provided separately.
- 4. DO NOT TAMPER WITH THE OMR OR THE BOOKLET.
- 5. Please fill your roll number correctly in the OMR sheet (answer sheet).
- 6. Both Question Paper and OMR Answer Sheet will be submitted after completion of this examination.
- B. Question Paper Format and marking scheme:
 - 1. The Question Paper consists of five parts (Part I: MAT, Part II: Physics, Part III: Chemistry, Part IV: Mathematics).
 - 2. Each Question carries +3 marks for correct answer and -1 mark for incorrect answer.

MAT In a certain code, 'PLEADING' is written as 'CHMOQMFB'. How is 'SHOULDER' written in that 1. code? (a) KCDQTIPV (b) QDCKVPIT (c) KCDQTIPV (d) TIPVQDCK Which group of letter is different from others? 2. (a) PBQTX (b) DRYSN (c) MEWGN (d) CGHKV In the following letter sequence, some of the letters are missing. These are given in order as one 3. of the alternatives below. Choose the correct alternative. _bbca_bcca_ac_a_cb (a) abcba (b) acbab (c) bacab (d) bcaab Find the next number in the sequence. 4. 30, 120, 350, 720, ? (a) 1150 (c) 1200 (b) 1300 (d) 1342 Directions (Q. Nos. 5-9) Read the following information carefully and answer the questions given below. A, B, C, D, E, F and G are sitting around a circle facing at the centre having dinner not necessarily in same order. E is neighbour of A and D. G is not between F and C. F is to the immediate right of A. 5. Which of the following is not have the pair of persons sitting adjacent to each other? (a) BA (b) CB (c) DE (d) GD 6. Which of the following pairs has the second person sitting immediately to the right of the first? (a) AB (b) CB (c) EA (d) GC What is the position of F? 7. (a) Third to the left of C (b) Second to the right of C (d) None of the above (c) To the immediate left of A 8. Who are the neighbours of B? (a) A and B (b) C and D (c) F and C (d) None of these 9. Which of the following persons are sitting adjacent to each other from left to right in the order as shown? (a) BGC (b) FBC (c) CDG (d) EDG In the figure, triangle represents doctors, the circle represents players and rectangle represents 10. artists.

Then, which number represents doctors who are neither players nor artists? (a) 2 (b) 3 (c) 4 (d) 5

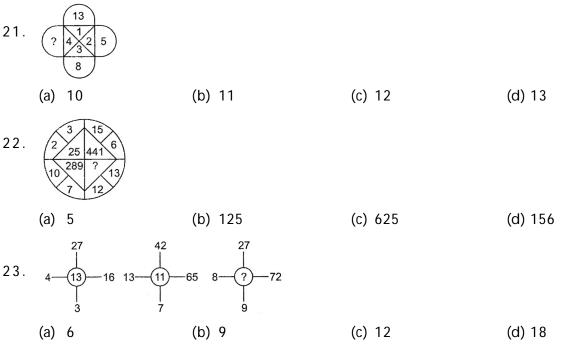
2

- 11. Which of the following diagram/set indicate the relation between citizen, educated and men?
 - (a) (〇

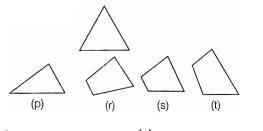
(b)

(d) 💓

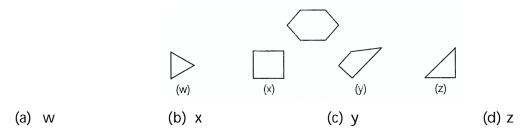
- 12. Question given below has a problem and two Statements I and II. Decide, if the information given in the statements is sufficient to answer the problem. Among Maddy, Nittu, Dev, Pinku and Kunal, who earns more than only the least earner among them Statements
 - I. Nittu earns more than Maddy and Pinku but less than only Dev.
 - II. Maddy earns more than Pinku who earns less than Kunal.
 - (a) Data in Statement I alone is sufficient
 - (b) Data in Statement II alone is sufficient
 - (c) Data in both statements together is sufficient
 - (d) Data in both statements together is not sufficient
- 13. In question, the five letters represent five different digits. What are the actual figures? If there is no zero?


	LMNK							
		+ N	1 K N L					
	ΝΝΜΑ							
	(a) L = 4, M = 6, N =	= 2, K = 3, A = 7	(b) L = 6, M = 5, N =	2, K = 8, A = 7				
	(c) L = 4, M = 2, N =	= 6, K = 3, A = 7	(d) L = 6, M = 4, N =	7, K = 9, A = 2				
14.	Find the missing terr	n in the series.						
	2, 4, 2, 6, 3, 12, ?, 40)						
	(a) 8	(b) 6	(c) 11	(d) 5				
15.	In a group of cows a The number of cows		legs are 14 more than t	wice the number of heads.				
	(a) 5	(b) 7	(c) 10	(d) 12				
16.	What is the product	of all the number in the	dial of a telephone?					
	(a) 1,58, 480	(b) 1, 59, 450	(c) 1, 40, 680	(d) None of these				
17.		ess conference, the ten pe kes will there be all tog	• •	nands with each other once.				
	(a) 60	(b) 45	(c) 55	(d) 90				
18.	0	. He turn 100° in the cloc ection is Mohan facing r		n 145° in the anti-clockwise				
	(a) East	(b) North-East	(c) North	(d) North-West				
	<i>Directions (Q. Nos. 19-20)</i> Take the given statement(s) are true and decide which of the conclusions logically follows from the statements.							
19.	Statements All desks Conclusions	are chairs. No chair is a	a table. Some tables are	fans. Some fans are chairs.				
	I. Some desks are III. No desks is a tak		II. Some fans are des	sks.				
	(a) Only Conclusion	I follows	(b) Only Conclusion I	l follows				
	(c) Only Conclusion	III follows	(d) All conclusions fol	low				
		2						

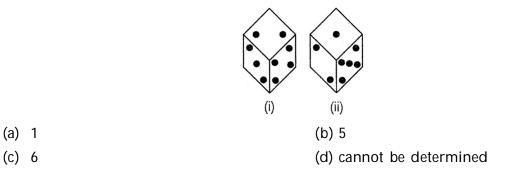
20. Statements All vegetables are fruits. No vegetables are cereals. All cereals are fruits. Some cereals are healthy.


Conclusions

- I. Some fruits are healthy. II. No vegetable is healthy.
- III. All healthy are fruits.
- (a) Only Conclusion I follows (b) Only Conclusion II follows
- (c) Only Conclusion III follows (d) Both Conclusions II and III follow


Directions (Q. Nos. 21-23) Find the missing number in the following questions.

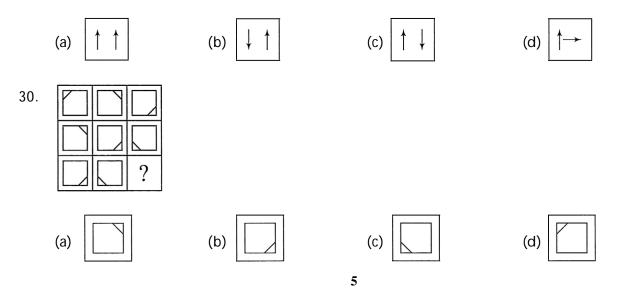
24. Identify which among the pieces given below will not be required to complete the triangular pattern shown below?



- (a) p (b) t (c) r (d) s
- 25. A pattern is given below. You have to identify which among the following pieces will not be required to complete the pattern?

26. Choose the alternative which is closely resembles the mirror image of the given combination.

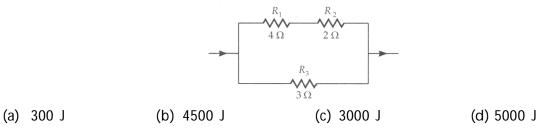
- SNA34Q21 (b) 12Q43ANS (3) ANS43Q12 (d) 21Q34SNA (6)
- 27. A dice is rolled twice and the two positions are shown in the figure below. What is the number of dots at the bottom face when the dice is in position (i)?


28. There are 40 boys and girls arranged in a queue in the decreasing order of their height. If Ranvijay is at 17th position and there are 9 boys ahead of him, then total boys behind Ranvijay, if there are 17 girls in total are

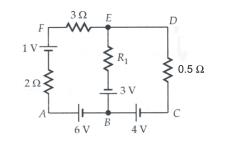
(a) 10 (b) 13 (c) 12 (d) 1	17
----------------------------	----

Directions (Q. Nos. 29-30) Which figure will replace the 'question mark' from the options to complete the figure?

29. Problem Figures


1	1	1	ţ	ļ	Ť
† -	+	† -	<u> </u>	↓ -	→
1	ţ	•	?	ł	ţ

		PH	SICS				
31.	Among identical sp	heres A and B having c	harges as -5 C and -1	6 C			
	(a) -5C is at higher	potential	(b) –16C is at high	er potential			
	(c) both are at equa	al potential	(d) it cannot be sai	d			
32.	is indepen	dent of size and shape	of a conductor.				
	(a) Resistance	(b) conductance	(c) Resistivity	(d) it cannot be said			
33.	In a parallel circuit	of bulbs,					
	(a) same current ex	ists in all the bulbs					
	(b) voltage across each bulb reamins the same						
	(c) failure of any b	ulb leads to a break in	the circuit				
	(d) All the above						
34.				0.5 A with an external resistor hm. Calculate emf of the cell.			
	(a) 4 v	(b) 6.5 v	(c) 8 v	(d) 9 v			
35.		of 10 Ω are connected ir ough it is A.	n series to a battery of	potential difference 150 V. The			
	(a) 45	(b) 5	(c) 15	(d) 20			
36.	Find the current dra network given below		1 V and internal resis	tance 2 / 3Ω connected to the			


(a) 1A (b) 0.5 A (c) 0.1 A (d) 2 A

37. In a part of the circuit shown in the Figure, the rate of heat dissipation in 4 Ω resistor is 100 J/s. Calculate the heat dissipated in the 3 Ω resistor in 10 seconds.

- 38. Which of the following statements is true?
 - (a) In tree type distribution of electric power, fuses are present only on the main board
 - (b) In ring type distribution of electric power, there is an individual fuse for each appliance
 - (c) Ring type distribution of electric power is advantageous than the tree type distribution
 - (d) All the above

39. Use Kirchhoff's rules to determine the potential difference between the points A and D when no current flows in the arm BE of the electric network shown in Figure.

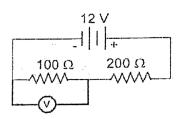
- (a) 4 V (b) 6 V (c) 9 V (d) 12 V
- 40. Find the equivalent resistance of the networks shown in figure between the points A and B.

41. If '*I*' is the current through a wire and e is the charge of electron, the number of electrons passing through it in t second will be given by:

(a)
$$\frac{h}{t}$$
 (b) lite (c) $\frac{e}{h}$ (d) $\frac{h}{e}$

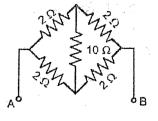
- 42. Two particles having charges q_1 and q_2 when kept at a certain distance exert force F on each other. If distance is reduced to half, force between them becomes—
 - (a) $\frac{F}{2}$ (b) 2F (c) 4F (d) $\frac{F}{4}$
- 43. All the following statements are correct except:
 - (a) A body is said to be positively charged when it has got excess of electrons
 - (b) When a body is charged positively, some electron escape from it
 - (c) The presence of moisture in the air reduces the conductivity of charge
 - (d) None of the above
- 44. $\frac{4}{25}$ coulomb of charge contain____electrons:

45. Assuming the charge of electron is 1.6×10^{-19} C, the number of electrons passing through a section of wire per second when the wire carries a current of 1A is :


(a) 6.25×10^{18} (b) 1.6×10^{-19} (c) 1.6×10^{19} (d) 0.625×10^{17}

- 24 J work is done is moving a charge q between two points having potential difference 12 volt. The value of charge q is:
 - (a) 2 C (b) 0.5 C (c) 24 C (d) 12 C

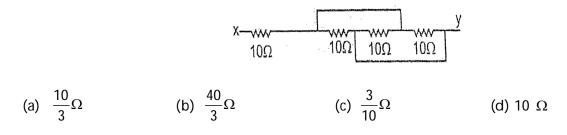
- 47. If current drawn from a cell is increased, then the potential difference across the terminals of the cell will:
 - (a) increase (b) decrease (c) remains same (d) none of these
- 48. The efficiency of a cell is 50 Ah. It will give 0.5 amp current upto:
 - (a) 50 h (b) 100 h (c) 25 h (d) 0.5 h


49. A wire of resistance R is cut into n equal parts. These parts are then connected in parallel. The equivalent resistance of combination will be:

- (a) nR (b) R/n (c) n/R (d) R/n^2
- 50. Three resistance each of 8Ω are connected to a triangle. The resistance between any two terminal:
 - (a) 12Ω (b) 2Ω (c) 6Ω (d) $\frac{16}{3}\Omega$
- 51. In the circuit shown in fig., the reading of the volmeter V will be:

(a) 4 V	(b) 2V	(c) 6 V	(d) 3 V
			· 0

52. What is the total resistance across A and B is the circuit shown in Figure?

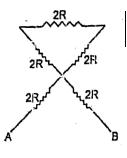

(c) 1.5 Ω

(a) 1 Ω

(d) none of these

- 53. A person connects four, $\left(\frac{1}{4}\Omega\right)$ cells in series but one cell has its terminal reversed. The external resistance is 1 Ω . If each cell has an e.m.f. of 1.5 V, the current flowing is : (a) 1 A (b) 0.5 A (c) 1.5 A (d) 2 A
- 54. The equivalent resistance between X and y is :

(b) 2 Ω



55.	A wire of resistance R (a) 16 R	is stretched to four times (b) 9 R	s its initial length. What (c) 4 R	will be the new resistance : (d) R
56.	The image formed by i		(0) + 1(
50.	(a) Virtual and erect	ctina of norman cyc is	(b) Real and inverted	
	(c) Virtual and invert	ad	(d) Real and erect	
57			. ,	ional to
57.		ius r, the magnetic field		
50	(a) r ²	(b) r	(c) 1/r	(d) 1/r ²
58.	-	e. Magnetic field produc		ar loop of the radius 20 cm oop is
		10 A	E.	
		F		
	(a) 10 π μT	(b) 5πμT	(c) 4 π μT	(d) 2 π μT
59.	The persistence of visi	•		
	(a) 1/10th of a second		(b) 1/16th of a second	
	(c) 1/6th of the secon	nd	(d) 1/18th of a second	
60.	0	and 0.4 cm in diameter magnetic field at the axis	• •	cm length. A current of 5 A
	(a) 2π × 10⁻³ T	(b) 2π × 10 ⁻⁵ T	(c) 4π × 10 ⁻² T	(d) 4π × 10 ⁻³ T
61.	5 5	es are set parallel to each en them is 2r. Intensity o		rent i in the same direction ay between them is
	(a) $\frac{\mu_0 i}{r}$	(b) zero	(c) $\frac{4\mu_0 i}{r}$	(d) $\frac{\mu_0 i}{4r}$
62.	right angles to a unifo	• • •	ensity B. If the speed of t	circular path of radius r at the electron is doubled and
	(a) 2r	(b) 4r	(c) $\frac{r}{4}$	(d) $\frac{r}{2}$
63.		article are projected nor of radii of the trajectori	5	field with the same speed. particle?
	(a) 2:1	(b) 1:2	(c) 4 : 1	(d) 1 : 4
64.	The amount of light e	ntering the human eye i	s controlled by	
	(a) Ciliary muscles	(b) Pupil	(c) Cornea	(d) Eye lens
65.	20 cm. The two are ke	e .	object is placed 40 cm i	irror of radius of curvature n front of the convex lens.
	(a) –16.67 cm	(b) 16.67 cm	(c) 40 cm	(d) –40 cm
66.		ong a horizontal surface ate of 0.5 m/s². The time	-	ts with a velocity of 12 m/s. rest is:
	(a) 42 s	(b) 48 s	(c) 24 s	(d) 84 s

67. A small bulb is placed at the bottom of a tank containing water to a depth of 80 cm. What is the area of the surface of water through which light from the bulb can emerge out ? Refractive index of water is 1.33. consider the bulb to be a point source.

(a) 2.6 m^2 (b) 2 m^2 (c) 1 m^2 (d) 3.5 m^2

68. In the given circuit, the equivalent resistance between points A and B will be.

- 69. Two identical heater wires are first connected in series and then in parallel with a source of electricity. The ratio of heat produced in the two cases is :
 - (a) 2:1 (b) 1:2 (c) 4:1 (d) 1:4
- 70. An electric heater can boil a certain amount of water in 10 minute and another heater can do it in 15 minute, both working at the same voltage. If the two heaters are connected in parallel across the same voltage as before how much time will they take to boil the same amount of water?

(a) 9 min	(b) 12.5 min	(c) 7.5 min	(d) 6 min
-----------	--------------	-------------	-----------

CHEMISTRY

71.	The order of processes involved in the dressing of an ore is :						
	(i) grinding and crushing		(ii) hand-picking				
	(iii)	Pulverisation					
	(a)	i, ii, iii	(b) i, iii, ii	(c) ii, iii, i	(d) ii, i, iii		
72.	The	equation					
	Cu	+ $XHNO_3 \rightarrow Cu(N)$	$10_{3})_{2} + YNO_{2} + 2H_{2}O_{1}$, the	e values of X and Y are			
	(a)	3 and 1	(b) 8 and 6	(c) 4 and 2	(d) 7 and 1 respectively		
73.	73. In the following equation:						
	Na ₂	$CO_3 + xHCI \rightarrow 2N$	$IaCI + CO_2 + H_2O$ the va	lue of x is			
	(a)	1	(b) 2	(c) 3	(d) 4		
74.	The	correct acidic stre	ength order is :				
	(a)	$HCIO < HCIO_2$	< HCIO ₃ < HCIO ₄	(b) $HCIO_4 < HCIO_3 <$	HCIO ₂ < HCIO		
	(c)	HCIO < HCIO ₄	< HCIO ₃ < HCIO ₂	(d) $HCIO_4 < HCIO_2 <$	HCIO ₃ < HCIO		
75.	Con	nbustion of fuel is	8:				
	(a)	displacement re	action	(b) double displaceme	ent reaction		
	(c)	oxidation reaction	on	(d) isomerisation react	tion		
	10						

76.	. Gypsum has the formula :					
	(a)	$CaSO_4 \cdot \frac{1}{2}H_2O$	(b) CaSO ₄ .H ₂ O	(c) $CaSO_4 \cdot 1\frac{1}{2}H_2O$	(d) CaSO ₄ .2H ₂ O	
77.	BaC	$H_2 + H_2SO_4 \longrightarrow B$	aSO ₄ + 2HCI is			
	(a)	(a) combination reaction		(b) decomposition re	eaction	
	(c)	displacement re	action	(d) double displacen	nent reaction	
78.	The	pH of 0.001 N so	dium hydroxide solut	ion at 25°C is :		
	(a)	3	(b) 4	(c) 11	(d) 12	
79.	The	formula of Silver	Phosphate is :			
	(a)	AgPO ₄	(b) Ag_3PO_4	(c) $Ag_2(PO_4)_3$	(d) Ag_2PO_4	
80.	Wh	ich of the followi	ng is an example of co	mbination reaction?		
	(a)	$H_2 + CI_2 \longrightarrow 2H$	HCI	(b) n-Hexane <u>AICI</u> 3	\rightarrow hexane	
	(c)	Zn + H ₂ SO ₄	\rightarrow ZnSO ₄ + H ₂	(d) $N_2O_4 \longrightarrow 2NO_2$		
81.	Wh	ich of the followi	ng reactions are exoth	ermic in nature?		
	(a)	Combustion of	carbon	(b) Bond breaking		
	(c)	Bond formation	1	(d) Both (a) and (c)		
82.	Wh	ich among the fol	lowing statements is f	alse?		
	(a)	Every protonic	acid has its conjugate a	acid.		
	(b)	Pair of Bronstee	l acid and base that di	ffer by a proton is conjug	gate acid-base pair.	
	(c)			pair to form co-ordinate o	covalent bond is an acid.	
	(d)		ry is confined to aqueo			
83.		5		ormation of ionic bond.		
			metal, low EA value o			
	(b)		metal, high EA value o			
	(c)	0	metal, high EA value			
0.4	(d)	0	f metal, low IP value o	f non-metal		
84.		main constituent		to to one and the		
	(a)		Silicon dioxide, Alum			
	(b)		Iron oxide, Sulphur d			
	(C)	C	de, Silicon dioxide, Al	iuminium oxide		
0.5	(d)	none of these	7 b ± 2 it .			
85.		en Zn changes to	ZI1'2 IL :	(b) loss 1 starter		
	(a)	lose 2 electrons		(b) lose 1 electron		
	(c)	gains 1 electron		(d) gains 2 electrons		

86.	Ordi	nary glass is a mix	kture of :			
	(a)	Sodium silicate, (Calcium silicate	(b) Sodium silicate, Calcium silicate and Silica		
	(c)	Sodium silicate a	nd Silica	(d) none of these		
87.	When a small piece of dry potassium is put in			water, it reacts vigorous	sly to produce :	
	(a)	nitrogen gas		(b) hydrogen gas		
	(c)	carbon dioxide g	as	(d) sulphur dioxide		
88.	Whi	ch of the following	g is a hardest substance?	?		
	(a)	Charcoal	(b) Coke	(c) Graphite	(d) Diamond	
89.	Acid	ls should be stored	d in containers made of a	:		
	(a)	plastic	(b) glass	(c) metals	(d) clay	
90.	Milk	of magnesia is an	1:			
	(a)	acid	(b) antacid	(c) alkali	(d) rock salt	
91.	Basi	city of acetic acid i	S :			
	(a)	4	(b) 3	(c) 1	(d) 2	
92.	'Alu	m' is an example o	of :			
	(a)	single salt	(b) double salt	(c) acids	(d) none of these	
93.	Whi	ch of the following	g is not a base according	to any of the theories?		
	(a)	Mg(OH) ₂	(b) NH ₃	(c) H ₂ PO ⁻ ₄	(d) BF ₃	
94.	Soft	drinks contain :				
	(a)	acetic acid	(b) tartaric acid	(c) carbonic acid	(d) nitric acid	
95.	Whi	ch of the following	g is formed when an oxi	de of a non-metal react	s with water?	
	(a)	acid	(b) base	(c) salt	(d) none of these	
96.	Hyd	rochloric acid, nit	ric acid and sulphuric a	cid are known as minera	al acids because they :	
	(a)	attack minerals		(b) are obtained from	minerals	
	(c)	are obtained fron	n crude oil	(d) both (a) and (b)		
97.	Whi	ch of the following	g solutions has the same	e concentration of H⁺ ior	ns as 0.1 N HCI?	
	(a)	$0.1N H_2SO_4$	(b) 0.3 N H ₃ PO ₄	(c) 0.2 N HNO ₃	(d) All of these	
98.	Whi	ch of the following	g acid does not react wit	h metals?		
	(a)	sulphuric acid	(b) phosphoric acid	(c) carbonic acid	(d) nitric acid	
99.			g acid is used in fire exti	-		
	(a)	hydrochloric acid	b	(b) sulphuric acid		
	(c)	nitric acid		(d) oxalic acid		
100.			g methods is not used fo			
	(a)		an acid and a base	(b) action of acid on m		
	(c)	action of acid on		(d) dissolution of acids	s in water	
101.		-	g is not a property of aci			
	(a)	all acids have a so		(b) acids turn blue litn		
	(C)	acids turn red lit	mus blue	(d) all acids form H+ id	ons in water	

102.		P-P bond angle in 45°	white phosp (b) 60°	horus is:	(c) 90°	(d) 120°		
103.	Whi	ch of them is not a	an ore of silv	ver?				
	(a)	Ag ₂ S	(b) AgNO ₃		(c) AgCl	(d) None of them		
104.	Whi	ch of the followin	g is a fast rea	ction?				
	(a)	reaction betweer	h_{2} and O_{2} t	o form H ₂ C)			
	(b)	reaction betweer	n acid and ba	se to form s	alt and water			
	(c)	hydrolysis of est	er					
	(d)	d) hydrolysis of sugar to glucose						
105.	Whi	ch of the followin	g reactions is	s not correct	:?			
	(a)	$2AgNO_3 + Cu \rightarrow$	• Cu(NO ₃) ₂ +	2Ag	(b) $Cl_2 + 2KI \rightarrow 2K$	$CI + I_2$		
	(C)	$FeSO_4 + Cu \rightarrow C$	CuSO ₄ + Fe		(d) CuSO ₄ + Zn \rightarrow	ZnSO ₄ + Cu		
106.	Whi	ch of the followin	g statements	is correct?				
	(a)	oxidation involv	es gain of ele	ctron				
	(b) substance which is reduced is reducing agent							
	(c) exothermic process involves absorption of heat							
	(d)	oxidation involv	es loss of elec	trons				
107.	Mate	ch the entries in C	olumn A wit	th appropria	ate ones in Column I	3.		
		Column A			Column E	3		
	(1)	German silver			(a) for making prin	ting type		
	(2)	Tungsten steel			(b) soldering			
	(3)	Alloy of Sn and	Pb		(c) for making high	n sped tolls		
	(4)	Alloy of Pb, Sn a	and Sb		(d) for making jewe	ellery		
	(a)	$1 \rightarrow b, 2 \rightarrow c, 3 \rightarrow c$	\rightarrow d, 4 \rightarrow a		(b) $1 \rightarrow c$, $2 \rightarrow d$, 3	\rightarrow a, 4 \rightarrow b		
	(c)	$1 \rightarrow d$, $2 \rightarrow c$, $3 \rightarrow c$	\rightarrow b, 4 \rightarrow a		(d) $1 \rightarrow d$, $2 \rightarrow a$, 3	\rightarrow b, 4 \rightarrow c		
108.	The	following flow ch	nart represen	t the extract	tion of			
				Froth flo	atation			
				\downarrow				
				Roast	0			
				↓ € === =				
				Smelt ↓	ung			
				Besseme	risation			
				\downarrow				
			// ` ·	Electrolytic	0	/ N · · · ·		
	(a)	copper	(b) zinc		(c) iron	(d) aluminium		

109.	When I	When Magnesium is burnt in air, a white ash remains as left over. What is this?							
	(a) N	1gO ₂	(b) MgO	(c) Mg	(d) Mg ₃ O				
110.	In the r	n the reaction:							
	2FeCl_2	$2\text{FeCl}_2 + \text{Cl}_2 \rightarrow 2\text{FeCl}_3$, Chlorine may be regarded as :							
	(a) ar	(a) an oxidising agent		(b) a reducing agent					
	(c) a	catalyst		(d) providing an inert medium					
	MATHEMATICS								
111.		Suppose that $w = (0.001)^{1000}$, $x = (0.001)^{0.001}$, $y = (1.001)^{1000}$, and $z = (2^{1000} - 1)^{0.001}$. Put these numbers in order from smallest to largest.							
	(a) w,	x, y, z	(b) w, x, z, y	(c) x, w, y, z	(d) x, w, z, y				
112.	A triangle with sides of length 13, 14 and 15 inches is to be cut whole from a rectangular sheet of paper. Expressed in square inches, what is the minimum area that this rectangular sheet can have?								
	(a) 16	8	(b) 174	(c) 188	(d) 202				
113.	If $\frac{23}{30} =$	If $\frac{23}{30} = \frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n}$, where a_1, a_2, \ldots, a_n are natural numbers, then the smallest value of n is							
	(a) 30		(b) 2	(c) 3	(d) 4				
114.		Suppose a, b and c are real numbers for which $\frac{a}{b} > 1$ and $\frac{a}{c} < -1$. Which of the following							
		be correct?	(h) a h	(a) $(a - a)/(b - a) = 0$					
	(a) a +	+ b – c > 0	(d) a > b	(c) $(a - c)(b - c) > 0$	(d) $a - b + c > 0$				
115.	How m	How many pairs of positive integer (a, b) with a + b \leq 100 satisfy $\frac{a+b^{-1}}{a^{-1}+b}=13$?							
	(a) 3		(b) 4	(c) 5	(d) 7				
116.		What is the smallest value of the positive integer n for which $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \ldots + \frac{1}{n.(n+1)}$ is least 1?							
	(a) 10	0		(b) 1000					
	(c) 2002			(d) there is no such value of n					
117.		If m and n are required to be integers, how many solutions (m, n) are there to the pair of conditions $5n - 3m = 15$ and $n^2 + m^2 \le 16$?							
	(a) 0		(b) 1	(c) 2	(d) 3				
118.	The sides of a triangle are $\sqrt{2}$, $\sqrt{3}$ and $\sqrt{11}$. Which of the following best describe the triangle?								
	(a) Iso	osceles	(b) None xistent	(c) Acute	(d) Equilateral				

- 119. If the LCM of the polynomials f(x) = (x + 1)⁵(x + 2)^a and g(x) = (x + 1)^b(x + 2)^a is (x + 1)^a (x + 2)^b, then find the minimum value of a + b from the following options.
 (a) is 10
 (b) is 14
 (c) is 15
 (d) Cannot say
- 120. Simplify:

 $\frac{a^{2} - (b - c)^{2}}{(a + c)^{2} - b^{2}} + \frac{b^{2} - (a - c)^{2}}{(a + b)^{2} - c^{2}} + \frac{c^{2} - (a - b)^{2}}{(b + c)^{2} - a^{2}}$ (a) 0 (b) 1 (c) a + b + c (d) $\frac{1}{a + b + c}$

121. The rational expression $A = \left(\frac{x+1}{x-1} - \frac{x-1}{x+1} - \frac{4x}{x^2+1}\right)$ is multiplied with the additive inverse of

$$B = \frac{1 - x^4}{4x}$$
 to get C. Then, C = _____

- (a) $\frac{32x^2}{x^4-1}$ (b) $\frac{2x}{x^4-1}$ (c) 2 (d) 1
- 122. A real number is said to be algebraic if it satisfies a polynomial equation with integral coefficients. Which of the following numbers is not algebraic :
 - (a) $\frac{2}{3}$ (b) $\sqrt{2}$ (c) 0 (d) π

123. The sum of the successors of two numbers is 42 and the difference of their predecessors is 12. Find the numbers.

- (a) 26, 16 (b) 14, 16 (c) 26, 14 (d) none of these
- 124. The total cost of 6 erasers and 9 pens is at least Rs. 102 and the cost of each eraser is at most Rs. 5. Find the minimum possible cost (in Rupees) of a pen. The following are the steps involved in solving the above problem. Arrange them in sequential order.

(A) Let the cost of each eraser be Rs. x and cost of each pen be Rs. y

- (B) $6x + 9y \ge 102$ and $x \le 5$.
- (C) $6 \times 5 + 9y \ge 102 \Rightarrow 9y \ge 72 \Rightarrow y \ge 8$.
- (D) The minimum possible cost of a pen is Rs. 8.
- (a) ABDC (b) ABCD (c) DABC (d) ACBD
- 125. Sanjana travels 660 km, partly by train and partly by car. If she covers 300 km by train and the rest by car, it takes 13.5 hours. But, if she travels 360 km by train and the rest by car, she takes 30 minutes longer. Find the time taken by sanjana if she travels 660 km by car. (in hours.)
 - (a) 13 (b) 14 (c) 12 (d) 11

126.	If the ordered pair (sin θ , cos θ) satisfies the system of equations mx + ny + a + b = a - b a nx + my + 2b = 0, then find the value of θ where $0 \le \theta \le 90^{\circ}$. (m \ne n)							
	(a) 30°	(b) 45°	(c) 50°	(d) 60°				
127.	If $x = \sqrt{6 + \sqrt{6 + \sqrt{6 +to \infty}}}$, then :							
	(a) x is an irrational(c) x = 3	number	(b) 2 < x < 3 (d) None of these					
128.	. The number of real solutions of the equation $2 x ^2 - 5 x + 2 = 0$ is :							
	(a) 0	(b) 4	(c) 2	(d) None of these				
129.	If $(2+\sqrt{3})^{x^2-2x+1} + (2-\sqrt{3})^{x^2-2x-1} = \frac{2}{2-\sqrt{3}}$, then x is equal to :							
	(a) 0	(b) 1	(c) 2	(d) Both (a) and (c)				
130.	If the expression $\left[mx-1+\frac{1}{x}\right]$ is non negative for all positive real x, then the minimum value of m must be :							
	(a) $\frac{-1}{2}$	(b) 0	(c) $\frac{1}{4}$	(d) $\frac{1}{2}$				
131.	If $x \in R$ and $k = \frac{(x^2 - x + 1)}{(x^2 + x + 1)}$, then :							
	(a) $x \le 0$	(b) $\frac{1}{3} \le k \le 3$	(c) k ≥ 5	(d) None of these				
132.	The value of k, so that the equations $2x^2 + kx - 5 = 0$ and $x^2 - 3x - 4 = 0$ have one root in common is :							
	(a) – 2, – 3	(b) -3 , $-\frac{27}{4}$	(c) – 5, – 6	(d) None of these				
133.	If $\tan \alpha + \sin \alpha = m \& \tan \alpha - \sin \alpha = n$, then $m^2 - n^2 =$							
	(a) √mn	(b) $\sqrt{\frac{m}{n}}$	(c) 4√mn	(d) none				
134.	If $\sin\theta + \cos\theta = \sqrt{2} \cdot \sin(90 - \theta)$, then $\frac{1}{\sqrt{2} + 1} = $							
	(a) cotθ	(b) $\frac{1}{\sqrt{2}-1}$	(c) tanθ	(d) none				
135.	Let $\alpha = \frac{\tan^2 A - \sin^2 A}{\tan^2 A \cdot \sin^2 A}$ & $\beta = \frac{\cot^2 A - \cos^2 A}{\cot^2 A \cdot \cos^2 A}$ (A is acute angle) are the roots of that quadratic							
	equation whose discriminant is 'D', then the most appropriate choice is:							
	(a) D > 0	(b) $D \ge 0$	(c) D = 0	(d) D < 0				
	16							

136. Let
$$T_1 = \frac{\sin 45^\circ - \sin 30^\circ + \cot 90^\circ}{\cos 45^\circ + \cos 60^\circ}$$
 and $T_2 = \frac{\sec 45^\circ - \tan 45^\circ}{\csc 45^\circ + \cos 0^\circ + \cot 90^\circ}$ then:
(a) $T_1 + T_2 = 0$ (b) $T_1 - T_2 = 0$ (c) $T_1 = \sqrt{2}T_2$ (d) $T_2 = \sqrt{2}T_1$
137. A ballon is connected to a meteorological ground station by a cable of length 215 m inclined at 60°
to the horizontal. Determine the height of the balloon from the ground. Assume that there is no
slack in the cable.
(a) $107.5\sqrt{3}m$ (b) $100\sqrt{3}m$ (c) $215\sqrt{3}m$ (d) $215/\sqrt{3}m$
138. If $\sin^2 A = 2\sin A \cos A$ and $\sin 20^\circ = K$, then the value of $\cos 20^\circ \cos 40^\circ \cos 80^\circ \cosh 160^\circ =$
(a) K (b) $-\sqrt{1-K^2}$ (c) $\sqrt{\frac{1-K^2}{8}}$ (d) $-\frac{\sqrt{1-K^2}}{8}$
139. The length of the side (in cm) of an equivalent triangle inscribed in a circle of radius 8 cm is ______
(a) $16\sqrt{3}$ (b) $12\sqrt{3}$ (c) $8\sqrt{3}$ (d) $10\sqrt{3}$
140. A wheel makes 20 revolutions per hour. The radians it turns through 25 minutes is ______

 $\sec 45^\circ - \tan 45^\circ$

(a)
$$\frac{50\pi^{c}}{7}$$
 (b) $\frac{250\pi^{c}}{3}$ (c) $\frac{150\pi^{c}}{7}$ (d) $\frac{50\pi^{c}}{3}$
141. The mode of the data 6, 4, 3, 6, 4, 3, 4, 6, 5 and x can be:
(a) Only 5 (b) Both 4 and 6 (c) Both 3 and 6 (d) 3, 4 or 6
142. Observation of some data are $\frac{x}{5}$, x, $\frac{x}{3}$, $\frac{2x}{3}$, $\frac{x}{4}$, $\frac{2x}{5}$ and $\frac{3x}{4}$ where x > 0. If the median of the data is
4, then find the value of 'x'?
(a) 5 (b) 7 (c) 8 (d) 10
143. If a coin is tossed two times, then what is the probability of getting a head at least once?

(a)
$$\frac{1}{4}$$
 (b) $\frac{3}{4}$ (c) $\frac{1}{2}$ (d) 1

144. One ticket is drawn from a bag containing 70 tickets numbered 1 to 70. Find the probability that is a multiple of 5 or 7.

(a)
$$\frac{1}{10}$$
 (b) $\frac{1}{70}$ (c) $\frac{6}{70}$ (d) $\frac{11}{35}$

145. If one number is selected from the first 70 natural numbers, the probability that the number is a solution of $x^2 + 2x > 4$ is _____.

(a)
$$\frac{69}{70}$$
 (b) $\frac{1}{70}$ (c) 1 (d) 0

- 146. A 4-digit number is formed by using the digits 1, 2, 4, 8 and 9 without repetition. If one number is selected from those numbers, then what is the probability that it will be an odd number?
 - (a) $\frac{1}{5}$ (b) $\frac{2}{5}$ (c) $\frac{3}{5}$ (d) $\frac{4}{5}$
- 147. In the figure shown, three circles X, Y and Z are tangent to each other at point O. The center of Y is on Z and the center of X is on Y. If the radius of Z is r, what is the area of the unshaded region?

- (a) $2 \pi r^2$ (a) $3 \pi r^2$ (a) $4 \pi r^2$ (a) $13 \pi r^2$
- 148. In the figure shown, three circles are inscribed in a cone as shown. The radius of the circles are 8, 12 and r. Find the area of largest circle with radius r.
 - (a) 324π (b) 225π (c) 196π (d) 289π
- 149. A cone, a hemisphere and a cylinder stand on equal bases of radius R and have equal heights H. Their whole surfaces area in the ratio:
 - (a) $(\sqrt{3} + 1) : 3 : 4$ (b) $(\sqrt{2} + 1) : 7 : 8$ (c) $(\sqrt{2} + 1) : 3 : 4$ (d) None of these
- 150. If a cube of maximum possible volume is cut off from a solid sphere of diameter d, then the volume of the remaining (waste) material of the sphere would be equal to :
 - (a) $\frac{d^3}{3} \left(\pi \frac{d}{2} \right)$ (b) $\frac{d^3}{3} \left(\frac{\pi}{2} \frac{1}{\sqrt{3}} \right)$ (c) $\frac{d^2}{4} \left(\sqrt{2} \pi \right)$ (d) None of these